Assignment 5

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} , unless otherwise stated.

Sub-martingales are good integrators

Show that (\mathbb{F}, \mathbb{P}) -local sub-martingale is an (\mathbb{F}, \mathbb{P}) -good integrator.

Hint: it will be useful here to use the Doob-Meyer decomposition for discrete-time martingales.

Khintchine inequalities

The goal of this exercise is to prove that if $(Z_n)_{n\in\mathbb{N}}$ be a sequence of random variables such that the set

$$S := \left\{ \sum_{k=0}^{n} \varepsilon_k Z_k : n \in \mathbb{N}, \ (\varepsilon_k)_{k \in \{0,\dots,n\}} \in \{-1,1\}^{n+1} \right\},\$$

is bounded in \mathbb{P} -probability, then, $\sum_{k=0}^{\infty} Z_k^2$ is \mathbb{P} -a.s. finite. In particular, $Z_k \longrightarrow_{k \to +\infty} 0$, both \mathbb{P} -a.s. and in \mathbb{P} -probability.

1) In order to prove this result, we need first an intermediary lemma, which is a variant of the so-called Khintchine inequalities. Fix some $n \in \mathbb{N}$ and some sequence $(\varepsilon_k)_{k \in \{0,...,n\}}$ of \mathbb{P} -independent random variables which are uniformly distributed on $\{-1, 1\}$ under \mathbb{P} . We will prove first that for any $K \in (0, 1)$, there exists $\delta > 0$ such that for any $(\lambda_k)_{k \in \{0,...,n\}}$ taking values in \mathbb{R}

$$\mathbb{P}\left[\left|\sum_{k=0}^{n}\lambda_{k}\varepsilon_{k}\right| \geq K\left(\sum_{k=0}^{n}\lambda_{k}^{2}\right)^{1/2}\right] \geq \delta.$$

a) Show that for any random variable $Y \in \mathbb{L}^1(\mathbb{R}, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}^{\mathbb{P}}[Y] > 0$

$$\mathbb{P}[Y > 0] \ge \mathbb{E}^{\mathbb{P}}[Y]^2 / \mathbb{E}^{\mathbb{P}}[Y^2].$$

b) Verify that

$$\mathbb{E}^{\mathbb{P}}\left[\left(\sum_{k=0}^{n}\lambda_{k}\varepsilon_{k}\right)^{2}\right] = \mathbb{V}\mathrm{ar}^{\mathbb{P}}\left[\sum_{k=0}^{n}\lambda_{k}\varepsilon_{k}\right] = \sum_{k=0}^{n}\lambda_{k}^{2},$$

and

$$\mathbb{E}^{\mathbb{P}}\left[\left(\sum_{k=0}^{n}\lambda_{k}\varepsilon_{k}\right)^{4}\right] = \sum_{k=0}^{n+1}\lambda_{k}^{4} + 3\sum_{\{(j,k)\in\{0,\dots,n\}^{2}:j\neq k\}}\lambda_{k}^{2}\lambda_{j}^{2} = 3\left(\sum_{k=0}^{n}\lambda_{k}^{2}\right)^{2} - 2\sum_{k=0}^{n+1}\lambda_{k}^{4} \le 3\left(\sum_{k=0}^{n}\lambda_{k}^{2}\right)^{2}.$$

- c) Using the two previous questions, deduce that whenever the $(\lambda_k)_{k \in \{0,...,n\}}$ are not all equal to 0, the desired result holds with $\delta = \frac{(1-K^2)^2}{3-2K^2+K^4}$. Conclude.
- 2) Prove that if μ is the uniform probability measure on $E := \{-1, 1\}^{n+1}$, then for any $K \in (0, 1)$, there is some $\delta > 0$ such that

$$\int_{E} \mathbf{1}_{\{|\sum_{k=0}^{n} \varepsilon_{k} Z_{k}| \ge K \sigma_{n}\}} \mathrm{d}\mu(\varepsilon) \ge \delta,$$

where for any $n \in \mathbb{N}$, $\sigma_n := \left(\sum_{k=0}^n Z_k^2\right)^{1/2}$

3) Deduce that for any L > 0

$$\int_{E} \mathbb{P}\left[\left| \sum_{k=0}^{n} \epsilon_{k} Z_{k} \right| \geq K \sigma_{n} \geq K L \right] \mathrm{d}\mu(\varepsilon) \geq \delta \mathbb{P}[\sigma_{n} \geq L],$$

3) Show that for any $\beta > 0$, we have for any L > 0 large enough

$$\beta \ge \delta \mathbb{P}[\sigma_n \ge L].$$

Conclude.